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ABSTRACT

Inspired by the success of transfer learning in computer vision, roboticists have
investigated visual pre-training as a means to improve the learning efficiency and
generalization ability of policies learned from pixels. To that end, past work has
favored large object interaction datasets, such as first-person videos of humans
completing diverse tasks, in pursuit of manipulation-relevant features. Although
this approach improves the efficiency of policy learning, it remains unclear how
reliable these representations are in the presence of distribution shifts that arise
commonly in robotic applications. Surprisingly, we find that visual representa-
tions designed for manipulation and control tasks do not necessarily generalize
under subtle changes in lighting and scene texture or the introduction of distrac-
tor objects. To understand what properties do lead to robust representations, we
compare the performance of 15 pre-trained vision models under different visual
appearances. We find that emergent segmentation ability is a strong predictor
of out-of-distribution generalization among ViT models. The rank order induced
by this metric is more predictive than metrics that have previously guided gener-
alization research within computer vision and machine learning, such as down-
stream ImageNet accuracy, in-domain accuracy, or shape-bias as evaluated by
cue-conflict performance. We test this finding extensively on a suite of distri-
bution shifts in ten tasks across two simulated manipulation environments. On
the ALOHA setup, segmentation score predicts real-world performance after of-
fline training with 50 demonstrations. Code and more information are available
at: https://kayburns.github.io/segmentingfeatures/.

1 INTRODUCTION

In spite of vast progress in computer vision, the question of how to learn a good visual representation
for robotics remains open (Chen* et al.| 2021). Elsewhere in computer vision, internet datasets are
retrofit to new tasks with transfer learning, which promises both generalization and fast adaptation to
downstream tasks in exchange for large-scale pre-training. But in the field of robotics, this promise
has yet to be fulfilled even though policies learned from pixels struggle substantially with data
efficiency (Cobbe et al., 2018) and especially generalization under visual changes in a scene (Cobbe
et al.,[2019a).

Recent work (Damen et al., 2018} |Grauman et al., [2022) posits that the missing piece is a large
pre-training dataset of object interactions across diverse environments — the ImageNet (Deng et al.,
2009) or CommonCrawl (Raffel et al., 2020) of manipulation. That is, if we want to improve the
visual generalization ability of pre-trained models we simply need to collect datasets of this kind
at scale. Indeed, training on large datasets of first-person human interaction data increases policy
performance and learning efficiency downstream (Nair et al., [2022; Xiao et al.l 2022), but these
evaluations occur in environments that are very similar to those used for policy learning. Robotic
applications commonly contain environments with varying lighting conditions, scene textures, and
background objects, and we want pre-trained representations to allow the robot to handle such vari-
ability. Yet we have few concrete measures of how well pre-trained representations generalize out-
of-distribution. To take a step towards understanding these problems, our goal in this paper is to
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thoroughly answer the questions “which models generalize?” and “how can we predict how well a
pre-trained model will generalize?”

QOur first key finding is that, when evaluated under visual distribution shifts, models that are de-
signed for manipulation and control do not outperform standard visual pre-training methods. This
finding violates our intuitions about what is needed to scale up robot learning and brings into ques-
tion what constitutes relevant data, how to quantify useful features, and the importance of design
choices such as model architecture. In other words, we need more guiding principles to help us
understand what representations are good for manipulation and make the problem of iterating on
pre-training strategies much more straightforward. Currently, evaluating a pre-trained policy re-
quires training and rolling out downstream policies across multiple environments and experimental
conditions. Instead, we can take inspiration from computer vision, which has developed proxies for
robust performance on vast out-of-distribution datasets (Geirhos et al., 202T).

Our second key finding is that the emer-
gent segmentation ability of a ViT model is a
strong predictor of out-of-distribution general-
ization performance. We visualize this phe-
nomenon, which we refer to as “segmenting-
features,” in Figure m Other metrics of
model quality, such as linear probes on Im-

ageNet (Chen et all 2020), and metrics of

out-of-distribution performance, such as in-
domain accuracy (Miller et al} [2021) and
shape-bias (Geirhos et al.| 2019), are not pre-
dictive for this model class, despite their pre-
dictive power in other commonly-studied do-
mains like image classification. This hints at
the possibility that the transfer setting of manip-
ulation differs from computer vision tasks typi-
cally studied within the robustness literature.

(... R I
With Segmenting-Features accuracy drops 37%

with distractors

To reach the conclusions above, we run 9,000
different simulated evaluations. Our simu-
lated environments are adapted from two dif-
ferent existing visual distribution shift bench-
marks (Xing et al 2021} [Xie* et all 2023)
to capture the shifts that arise commonly in =
robotics applications: changes in lighting,

background and object texture, and the ap- Figure 1: We find that the emergent segmenta-
pearance of distractors. More specifically, we tjon ability of ViT attention heads (measured by
train policies on top of 15 pre-trained mod- Jaccard index) predicts performance under visual
els, including 4 models designed for manipu- distribution shift. We refer to models with this
lation or control: R3M (Nair et a]|, 2022), two property as having “Segmenting_features‘” Notice
MVP variants (X1ao et al., 2022; Radosavovic| how the attention of MVP shifts towards the sugar
2022), and VIP (Ma et all, 2022). We pox distractor object in the bottom right image.
further validate these findings by comparing The impact of this factor overshadows other de-
a model designed for manipulation against a sign choices such as data relevance.

model with a similar parameter count on a real-

world screwdriver pick-up task using the ACT

training framework 2023). Through these experiments, we make two striking find-
ings: (1) pre-trained visual models designed for control do not necessarily generalize better than
models pre-trained on more standard computer vision datasets and (2) the emergent segmentation
performance of a ViT model is a strong predictor of the out-of-distribution generalization of a down-
stream policy.
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Figure 2: Evaluation Scheme. We begin our evaluation procedure by training a policy with behavior
cloning on top of frozen features. In every experimental setting, we ablate the encoder used to extract
features from the image observation. The learned policy is then evaluated in each of the visual shift
environments to attain a zero-shot success value.
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2 RELATED WORK

Representation learning for manipulation. The correct approach to visual representation learn-
ing for robotics is still an open question. There is evidence that separating visual representation
learning from policy learning can further improve performance (Pari et al.l 2022} [Parisi et al.| 2022).
Recent works have shown that models pre-trained on large manipulation-relevant datasets
et all [2017; [Damen et al. 2018}, 2020} [Grauman et al.} [2022)) or learned with visual
affordances from RGBD data (Yen-Chen et al, 2020) can improve the efficiency and performance
of policy learning (Karamcheti et al., 2023) in comparison to standard vision datasets such as Ima-
geNet (Deng et al.}[2009), but they do not focus on performance under visual distribution shift. We

evaluate the performance of R3M (Nair et all, [2022), MVP (Xiao et al, 2022} [Radosavovic et al],
[2022), and VIP 2022). Other work has studied generalization of pre-trained represen-

tations to new reinforcement learning tasks for manipulation (Ma et al.|, 2022) and navigation
2018)) where the agent is able to train on visual data from the new environment. Separate from

the question of pre-training visual representations is the question of how to best train policies on top
of pixel observations (Laskin et al., 20200} Yarats et al., 202T). [Majumdar et al.| (2023) benchmarks
the performance of pre-trained visual representations on a handful of manipulation environments,
but they focus on in-domain performance and also investigate navigation environments.
shows that model performance is highly sensitive to evaluation. We use imitation learning for
our evaluation protocol, which they find to be a more stable measure of performance. Concurrently
with our work, [Dasari et al.|(2023)) demonstrates that the importance of proper data balancing super-
sedes the content of any one pre-training dataset. We focus on benchmarking visual generalization
specifically and focus on advancing metrics that are predictive of generalization.

Robustness in computer vision. There is extensive work studying the impact of design choices,
such as architecture, loss, and data, on the performance of visual models under distribution shift.
See|Geirhos et al.| (2021) for a comprehensive comparison. Most relevant to our paper are studies of
shape-bias and architecture. While shape-biased models tend to be more robust than texture-biased
ones (Geirhos et al, 2019), the impact of architecture on robustness is less straightforward. For
example, vision transformers exhibit better robustness to universal adversarial attacks
[2022), but they are more susceptible to patch-level attacks 2022). When compared on
natural distribution shifts (Hendrycks & Dietterich|, 2019} [Hendrycks et al., [2021a}b)), vision trans-
formers and convolutional networks achieve comparable performance when provided with enough
data (Bhojanapalli et al.| 2021). But for occlusions specifically, vision transformers appear to have
an edge (Naseer et al., 2021). Miller et al| (2021) studies the predictive power of in-domain per-
formance for out-of-distribution generalization. Unlike all of these prior works, we focus on how
pre-trained representations affect robustness in downstream robotics tasks, instead of downstream
vision tasks.
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Figure 3: Visual Generalization Performance. Models trained with supervision on ImageNet
are shades of blue. Models trained with self-supervision on ImageNet are in red. Models trained
explicitly for manipulation and control tasks are . Dotted bars denote ResNets and slashed
bars denote ViTs. Surprisingly, the best performing models are not necessarily the ones designed
for manipulation. Each bar is an average over 30 experimental conditions.

Learning robust policies. Unlike work that focuses on changes in dynamics or initial state distribu-

tion (Huang et al} 2021}, [Raileanu et al.,[2020; [Laskin et al.} 2020a; /Cobbe et al., 2019b; [Packer et al.}
2018; [Farebrother et al., 2018), we focus exclusively on the setting of visual distribution shifts.

et al|(2021)) and|Zhao et al.|(2019) provide a comprehensive survey on non-visual distribution shifts
in decision making problems. Policy adaptation approaches enable visual robustness specifically
by leveraging insights from domain adaptation during policy training (Hansen & Wang}, 2021},
et all} 2021}, [Yoneda et al.} 2021)) or during deployment (Hansen et al.},[2021)). In the special case of
closing the sim-to-real domain gap, a popular approach is to add randomized textures while training
in simulation (Sadeghi & Levine), 2017} [Tobin et al.| [2017; [Peng et al.l 2018} [James et al.| 2019).
By contrast, our work is interested in explaining properties of a robust visual model for control.
Consequently, our insights can be leveraged with or without any task specific data.

3 ENVIRONMENTS, EVALUATION PROTOCOL, AND PRE-TRAINED MODELS

Our goal is to understand how robust existing representations for manipulation are to visual distri-
bution shifts that are realistic in robotic applications. To that end, we learn policies on top of frozen,
pre-trained encoders and then evaluate these policies zero-shot under changes in lighting, object and
scene texture, and the presence of distractors. These shifts are visualized in Appendix Figure[§|and a
high level summary of our evaluation procedure is visualized in Figure[2] In this section, we describe
the specifics of the manipulation environments, distribution shifts, and policy training setups.

Environments and tasks. We study ten tasks across two simulated manipulation environments,
which are selected based on their popularity in studying learning-based approaches to manipulation.
Within FrankaKitchen we evaluate performance on opening a microwave, sliding
a cabinet door open, pulling a cabinet open, turning a knob, and turning on a light. Within Meta-

World we study assembling a ring onto a peg, placing an object between two bins,
pushing a button, opening a drawer, and hammering a nail.

Distribution shifts. We develop a benchmark for out-of-distribution generalization within FrankaK-
itchen and Meta-World. Within FrankaKitchen, we reimplement the texture and lighting changes

from KitchenShift (Xing et al.l 2021). Within Meta-World we use texture changes from [Xie* et al.|



(2023) and reimplement the same lighting changes as in FrankaKitchen. In both environments we
include three levels of distractors: one, three, and nine YCB objects (Calli et al.,2015). More details
about the implementation and parameterization of the distribution shifts are provided in Section[A3]

Policy training. Policy training is done in the same manner as R3M (Nair et al.||2022). A summary
of the evaluation scheme is provided in Figure[2] We train an MLP on top of the pre-trained embed-
ding with imitation learning (IL), which, given actions sampled from expert trajectories, a ~ Dirqin,
minimizes the mean squared error objective, ||a — a||3. Here @ denotes the action predicted from a
given policy. Details of the training procedure are provided in Section[A.4] The embedding weights
are frozen during policy learning, so the pre-trained models receive no task data. We train 3 different
seeds within each task for each of two different camera angles. In total, we learn 60 policies for each
model and perform 11 evaluations per policy, including on the train distribution.

Formally, for a pre-trained representation ¢ we learn policies, 74, each trained with a different seed,
camera angle, and task. We average the performance of 74 along each experimental condition and
compute the mean performance and error across seeds.

Pre-trained Visual Representations. We categorize pre-trained models by loss type and data
source: supervised ImageNet models, self-supervised ImageNet models, and models trained for
manipulation and control tasks. Model specifics are provided in Appendix Section[A]

4 GENERALIZATION OF MODELS PRE-TRAINED FOR MANIPULATION

One factor motivating work in learning-based

robotics is the hypothesis of scale: if we col- Train Dist.
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work has trained visual representations for
manipulation in two ways: by training with
manipulation-specific losses or on data of
human-object interactions. We focus on three
recently introduced pre-trained models for ma-
nipulation that use different combinations of
these approaches: Masked Visual Pretraining
(MVP) (Xiao et al., 2022), Reusable Repre-
sentations for Robot Manipulation (R3M) (Nair
et al., [2022)), and Value-Implicit Pre-Training (VIP) (Ma et al.| [2022)). We include important char-

Figure 4:  Average success rates for training
and test distribution across both environments for
every model in our evaluation suite. The best-
performing model that was designed for manip-
ulation ranks seventh out of all models evaluated.
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Figure 5: We plot the relationship between different metrics and out-of-distribution (OOD) gener-
alization. There is a promising correlation between shape-bias and OOD performance for ResNets,
but not ViTs. Instead, OOD performance for ViTs is strongly correlated with Jaccard index.

acteristics of these models, including dataset sizes, architecture sizes, and augmentations in Sec-
tion[A.Iland Table

These models perform strongly within the training distribution: R3M and VIP in particular comfort-
ably beat standard pre-training baselines. This is expected, especially for R3M which was evaluated
on the same training environment. However, under subtle distribution shifts, models designed for
manipulation struggle to generalize as well as supervised or self-supervised training with ImageNet.
This is surprising for a few reasons. First, each manipulation model is trained on a larger dataset than
the pre-trained baselines. Ego4D alone is 4.5M frames while ImageNet is only 1.2M. By parameter
count, MVP is also larger than the ViT-S baselines. Finally, we expect human-object interaction
datasets such as Ego4D to be more similar to the distribution of images observed when training a
manipulation policy. The viewpoints are more varied and the scenes are less curated than ImageNet.
Although we expect this to improve the generalization of the learned policy, these results show that
other factors may supersede the impact of data relevance or scale alone.

Supervised ImageNet models. Supervised training on ImageNet has long been a baseline for vi-
sual pre-training. Past work has found that features learned with supervised learning on ImageNet
are also a strong baseline for control: even frozen features are competitive with ground-truth state
information on a variety of simulated control tasks (Parisi et al.l |2022). However, |Parisi et al.
(2022) also find that self-supervised learning outperforms supervised learning. Our results contra-
dict this finding. Figure ] shows that supervised training on Stylized ImageNet achieves a higher
success rate in the training distribution than self-supervised training on ImageNet with a masked
auto-encoding loss. These models maintain the same rank out-of-domain as well. Even without
stylization, in-domain performance of supervised ImageNet models are competitive with models
trained with MAE on FrankaKitchen. From these results, we conclude that the presence of supervi-
sion is not as predictive of in-domain or out-of-domain performance as other factors. We also find
that supervised ImageNet training is still a strong baseline for model generalization: in both settings
ViT-INSUP outperforms R3M and MVP.



In Figure[3| we include two self-supervised ViT-S models. Un-
der visual distribution shifts, the model trained with the DINO objective outperforms all three mod-
els that are designed for manipulation. Moreover, this trend holds for every distribution shift except
Meta-World with distractors. The distractors evaluation suite averages over different levels of dis-
tractions and therefore favors models with a high performance in training. In Appendix Section[A.9]
we plot model performance across different levels of distractors and find that several self-supervised
ViTs experience a smaller drop in performance as more distractors are added compared to ResNet
based pre-trained manipulation models like R3M and VIP.

Training with masked autoencoding performs well under distribution shifts in Meta-World, but is
less strong under distribution shifts within FrankaKitchen. In Figure[d] we see that MoCo. v3, ViT-B
also performs strongly out-of-distribution. When we compare MoCo and DINO against MAE-style
training we see that MoCo and DINO use a more extensive set of augmentations. Taking this into
account alongside the observation that a ViT trained with supervision on Stylized ImageNet per-
forms well out-of-distribution we conclude that choice of augmentations outweighs the importance
of supervision. This extends the findings of |Geirhos et al.| (2021) to the setting of robust manipula-
tion.

ViTs vs ResNets. One important design choice

when selecting a pre-trained model is the choice of Success with Increasing Distractors
architecture. We focus on ResNets and ViTs. In

all of our experiments, we use ResNet-50 (He et al 30 40
2016) to be consistent with past work on visual pre-  u 30 5
training (Parisi et al., [2022; [Nair et al.l 2022; Ma gzo 2
et al., 2022). Vision transformers (ViTs) (Doso-| 3 AN 209
vitskiy et al) 2021) have seen widespread adop- & 10 l\\\»‘ S
tion within computer vision (Khan et al., [2022)), but < = 103
have only recently been used for learning repre-

sentations for control (Xiao et al., [2022). We find 0 0
that, on average, ViTs have a slight edge on out-of- Level of Distractors

distribution generalization compared to equivalently - . -
trained ResNets. In Figure [] out of the seven pre- ¢ xg':;\'lzgp N BI\TSJ?T ;'(THOI)
trained models that perform best out-of-distribution SIN-SUP CLIP, VITB/16
six are ViTs. Ablating architecture alone while hold- + MVP ® MAEIN, ViTS

ing dataset, training augmentations, and parameter MoCo. v3, ViT MoCo. v3, VIT-B
count constant, we can compare the model pairs

“MoCo. v3, RN” and “MoCo. v3, ViT”, “RN-

DINO” and “ViT-DINO”, and “RN-INSUP” and Figure 6:  What happens to models with a
“VIT-INSUP?” In the latter two pairs, the ViT variant high Jaccard index under an object-level dis-
is much stronger out-of-distribution than the ResNet tribution shift? Surprisingly, the models with

variant. For MoCo, the two variants achieve similar the highest Jaccard index maintain Fhe high-
performance out-of-distribution. est performance as the number of distractors

) o ) ) ) increases.
Summary. This section identified which pre-trained

models generalize, with several interesting findings.

First, models designed for manipulaiton do not necessarily perform well under subtle distribution
shifts in comparison to more standard pre-training methods. Second, the presence or absence of su-
pervision does not matter as much as other factors on both in- and out-of-distribution generalization.
Finally, ViTs have a slight edge over ResNets in out-of-distribution generalization.

5 PROPERTIES OF ROBUST VISUAL REPRESENTATIONS FOR MANIPULATION

Our findings in the last section are both surprising and somewhat unsatisfying because they contra-
dict many of our intuitions about scale and generalization. In our evaluation suite, we saw that better
generalization is not cleanly explained by more data, bigger models, or more relevant data. The
goal of this section is to identify the properties of pre-trained models that are predictive of general-
ization. To that end, we correlate out-of-distribution performance with three metrics that have been
previously connected to generalization in the machine learning and computer vision literature—
in-domain performance, accuracy of a linear probe trained on ImageNet, and shape-bias. We also



include a fourth metric, which is specific to ViTs: the emergent segmentation accuracy of the output
attention heads. We describe each metric in detail in Section discuss our setup for correlating
performance in Section[5.2] and analyze our results in Section

5.1 METRICS

ID vs OOD. One of the goals of this paper is to under-
stand how well the findings from existing evaluations of
pre-trained models hold under the inevitable environment
changes that we expect to see in a real-world setting. If in-
distribution performance is reasonably predictive of gen-
eralization to our suite of distribution shifts, it is sufficient
for researchers to continue developing pre-trained models
with existing methods of evaluation. Past work has also
shown that the in-distribution performance of a pre-trained
model is positively correlated with out-of-distribution per-
formance for a variety of computer vision tasks
[2021). Concretely, we measure in-distribution per- Test Distribution
formance as the success rate of the policy within the train- :

ing distribution.

Training Distribution

Imagenet vs OOD. Training linear probes on Imagenet is
a common protocol for evaluating the quality of learned
representations (He et al.l 2019} [Chen et all, [2020).

(2023) make the related finding that the ImageNet
k-NN accuracy of a pre-trained model is predictive of per-

formance on imitation learning with a visual reward func-
tion. We evaluate ImageNet validation set accuracy for all
models with linear probes available. Figure 7: Real world training and test
distribution. The test distribution dif-
fers from the training distribution in the
position of the target objects and the di-
rection of the lighting.

Shape-Bias vs OOD. Shape bias is the extent to which
a model makes prediction decisions based on shape. We
calculate shape bias as the percent of shape classification
decisions out of the set of texture or shape classifications

on the Stylized-ImageNet validation set (Geirhos et al.l
using the same probes described above.

Jaccard vs OOD. Finally, for all of the ViT models, we look at the emergent segmentation perfor-
mance. We evaluate the Jaccard index of an interpolated attention map averaged across heads in the
last attention block at the [CLS] token.

5.2 SETUP

We measure the coefficient of determination (22) and Spearman’s rank correlation (p) for the corre-
lation between the out-of-distribution success rate and each metric described above. Our goal is to
find a metric that will result in high correlation between the metric and the OOD success, i.e. both
coefficients being close to 1.0. We fit separate trend lines to ViTs and ResNets. Because of the lack
of available probes, we exclude MVP, MVP ViT-S HOI, R3M, VIP, and MAE-IN ViT-S from the
shape bias and ImageNet probe correlations. Each point represents one of the 15 pre-trained models
we evaluated and represents the average of 6,000 evaluation runs.

5.3 RESULTS

We visualize the correlation between each metric and the average out-of-distribution success rate in
Figure[5] Although we see a positive relationship between in- and out-of distribution generalization,
there are pre-trained models that notably deviate from this trend. Among ViT models one example is
MVP, ViT-S (HOI): the average success rate of this model drops to 6.63 from 39.86. By contrast, we
find that ImageNet accuracy of a linear probe poorly predicts generalization performance for ViTs.



We also see little correlation between shape-bias and OOD performance for ViT models, but a
promisingly strong correlation on the subset of ResNets evaluted. This is surprising because hu-
mans make highly shape-biased decisions and increasing shape-bias increases the robustness of
imagenet trained CNNs (Geirhos et al.,|2019;2021)). One explanation of this finding is that the ViT
architecture obviates the need for shape-biased features. For example, a ResNet-50 trained with the
DINO training scheme has a strong shape-bias, but not the equivalent ViT model.

Finally, we visualize the relationship between the Jaccard index and OOD performance on all ViT
models in Figure 5] There is a strong positive correlation between Jaccard index and OOD perfor-
mance both in terms of rank correlation and the coefficient of determination. These results suggest
that while shape-bias may not be predictive of the OOD generalization ability of a pre-trained ViT,
the segmentation ability is a predictive alternative.

One counter-argument to the use of Jaccard index as a metric for for OOD performance is that
it would be less predictive for object-level distribution shift, which would occur any time a large
distractor is placed in the background of the image. In Figure[6] we plot the success rates of each
ViT model as the number of objects increases and verify that the models with the higher Jaccard
index actually maintain the highest performance as the number of distractors increases.

5.4 VALIDATING IN THE REAL WORLD

In this section, we validate our finding on a real-world generalization scenario by comparing a ViT-B
model designed for control (MVP) against a model not designed for control but with a high emergent
segmentation score (MoCo-v3).

Setup. We learn policies for picking up a screwdriver
on the ALOHA setup using the ACT training framework
(Zhao et al}|2023)). The training dataset is comprised of 50
episodes collected by an expert human demonstrator. Im- MVP 0%

ages are collected from 4 camera view points (one on each MoCo-v3 40%

wrist, one top camera, and one front camera). We replace

the standard encoder with a ViT-B and change the initial- Table 1: Success rates on the task of
ization of the encoder based on the experimental condition —picking up the screwdriver.

(i.e., we select for a different pre-trained model). We fol-

low the standard ACT training paradigm with the hyperparameters listed in Appendix Table 4] From
the training data to the test runs there is a distribution shift in both the placement of the target object
(the screwdriver) and in the direction of the lighting. This is visualized in Figure [/} We calculate
success on screw pick ups averaged over 10 rollouts in the test environment.

Model Success

Results. We find that MoCo-v3 is stronger on this setting than MVP, even though it is not explicitly
designed for manipulation. We find that the MoCo-v3 initialized encoder is able to achieve a success
rate of 40% on this task while the MVP initialized encoder is not able to successfully grasp the
target object. Qualitatively, the MVP model fails in localizing the object when attempting the grasp,
whereas MoCo-v3 model reliably localizes the object, but experiences more failure in finding the
right grasp point.

6 CONCLUSION

In this paper, we make several surprising findings about the generalization ability of pre-trained vi-
sual representations for manipulation tasks. First, we find that, contrary to the current direction in the
literature, models pre-trained on manipulation-relevant data do no necessarily generalize better than
models trained on standard pre-training datasets (such as ImageNet). Instead, we uncover a recipe
for strong generalization: ViT models with a high emergent segmentation accuracy generalize well
under visual distribution shifts. Emergent segmentation accuracy is not only a stronger predictor
of generalization than many other metrics for robustness, but also requires no additional training to
evaluate. This insight can guide the development of pre-trained vision models in future work: pre-
ferring architecture development and training algorithms that lead to strong emergent segmentation
as opposed to only training on more manipulation-relevant data.
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A APPENDIX

A.1 PRE-TRAINED MODEL DETAILS

RN-INSUP (He et al.| 2016)) is a ResNet model trained on the ImageNet classificaiton task. We use
the default weights and model provided by the Pytorch (Paszke et al.l 2019)) library.

ViT-INSUP is a Vision Transformer (Dosovitskiy et al., [ 2021) that has been distilled (Touvron et al.,
2021) from a larger network that was trained on the ImageNet classification task. In our experiments,
we use the model weights and architecture provided in|Naseer et al.[|(2021) with a patch size of 16.

SIN-SUP (Naseer et al.l [2021) trains a vision transformer on Stylized Image-Net (SIN) (Geirhos
et al., |2019). The SIN dataset was constructed to increase the degree to which a model makes
predictions on shape instead of texture. Our model weights come from Naseer et al.|(2021) and we
use the non-distilled DeiT (Touvron et al.,2021) training variant.

ViT-DINO (Caron et al.,[2021) is trained with extensive augmentations and a self-supervised, con-
trastive loss that together lead to emergent segmentation within the self-attention heads of the ViT
model. We use the model and weights provided by |Caron et al.| (2021). Interestingly, we don’t
find the DINO objective to lead to a high shape-bias. This suggests that there are other metrics that
measure the degree to which a model is object-centric other than shape-bias.

ResNet50-DINO is learned with the same recipe as ViT-DINO. We use the model and weights from
Caron et al.| (2021)).

MoCo. v3, RN (Chen* et al., [2021) leverages a contrastive loss with momentum encoding (He
et al.| 2019) of positive targets. It is trained with the same recipe as MoCo. v3, ViT-B.

MoCo. v3, ViT-B (Chen* et al.l 2021)) are trained in a similar manner as the original MoCo (He
et al., 2019), but with changes to improve the stability of training, which are specific to the ViT
archiecture. We use the checkpoint after 300 epochs.

MoCo. v3, ViT-S (Chen* et al., [2021) is trained in a similar manner as MoCo. v3, ViT-B. Even
though the smaller model benefits from a longer training horizon, we use the checkpoint at 300
epochs for consistency.

MAE-IN, ViT-S follows the same training recipe as MVP, but on top of the ImageNet dataset. We
use the weights provided by Radosavovic et al.[(2022).

R3M (Nair et al., 2022) trains a ResNet model with a combination of manipulation-specific losses—
including a time-contrastive loss (Sermanet et al., [2018)), video-language alignemnt loss, and L1-
regularization—on the Ego4D (Grauman et al.||2022) dataset.

MYVP (Radosavovic et al.,[2022) trains a ViT-B for masked autoencoding (MAE) (He et al.,|2021) on
the Ego4D (Grauman et al.| [2022), Something-Something (Goyal et al.,[2017), YouTube 100 Days
of Hands (Shan et al., [2020), EpicKitchens (Damen et al.| 2018]), and ImageNet (Deng et al., [2009)
datasets. Unlike R3M, the model is not designed to be exclusive to manipulation.
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Figure 8: We visualize each distribution shift from the left camera angle on the FrankaKitchen (top)
and Meta-World (bottom) environments.

MVP, ViT-S (HOI) (Xiao et al., 2022) is a predecessor of the model described above that trains a
ViT-S/16 with an MAE objective on Something-Something (Goyal et al.|[2017)), YouTube 100 Days

of Hands (Shan et al.,[2020), EpicKitchens (Damen et al.,[2018), and ImageNet (Deng et al.,[2009).
VIP 2022) uses an action-free dual of the Algaedice (Nachum et al., 2019) objective to

learn representations that are useful for trajectory optimization or reinforcement learning of con-
trol tasks unseen during representation pre-training. They train a ResNet-50 on Ego4D with this
objective.

CLIP, ViT-B/16 (Radford et al., 2021)) uses contrastive language-image pre-training to learn visual
representations trained on an extensive internet datsaet. The learned models exhibit strong zero-shot
performance for multiple tasks such as image classification.

DiNo v2, ViT (Oquab et all, [2023) scales [Caron et al] (2021) to more parameters and a larger
dataset. The full model is a 1B parameter ViT trained on LVD-142M, which is a 142M frame

dataset composed of ImageNet-1k, ImageNet-22k, Google Landmarks (Weyand et all, [2020), and
a collection of other datasets spanning fine-grained classification, segmentation, depth estimation,
and retrieval. The full model is distilled into smaller models. We select the ViT-S distilled model
for our experiments. In Table[2] we list the augmentations used on the teacher model. The training
loop is only lightly modified during distillation. Suprisingly, the v2 model sees worse in- and out-of-
domain performance on our evaluation suite in spite of being distilled from a ladrger model trained
on a bigger dataset.

A.2 DETAILS OF THE ENVIRONMENTS

FrankaKitchen (Gupta et al., 2019) is a simulated kitchen environment with a 9-DoF Franka robot.
There a multiple household objects available for interaction. The environment is designed to com-
pose tasks together hierarchically, but we focus on learning policies to successfully complete a
single task. The episode length is 50 and we inherit the randomization scheme used in R3M, which
randomizes the position of the kitchen at the start of each episode.

Meta-World is a simulated manipulation environment that consists of various
table-top manipulation interactions. Unlike FrankaKitchen, the scene objects vary between different
tasks. The positions of the objects are randomized at the start of each episode. The maximum
episode length is 500.

A.3 DETAILS OF THE DISRIBUTION SHIFTS
Each distribution shift is visualized from the left camera angle in Figure[8] We don’t use the MuJoCo

scanned object dataset that is used in (Xie* et al.l 2023)) because of imperfections in the coloring of
the textures.

A.4 PoLICY TRAINING DETAILS

We learn a 2-layer MLP on top of the pre-trained, frozen features with 10 demonstrations. We use
the same expert demonstrations as in R3M. We train policies independently over the ‘left_cap2‘ and
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Name Loss Function Architecture Datasets Augmentations

BCE-Loss ResNet-50 ImageNet Random crop,
(23M params) (1.2M frames) Horizontal flip
BCE-Loss ViT-S/16 ImageNet Random crop,
(22M params) (1.2M frames) Horizontal flip
BCE-Loss ViT-S/16 Stylized-ImageNet Random crop,
(22M params) (1.2M frames) Horizontal flip

Distillation ResNet-50 ImageNet Multi-crop,
(23M params) (1.2M frames) Color-jittering,
Gaussian blur,

Solarization

Distillation ViT-S/16 ImageNet Multi-crop,
(22M params) (1.2M frames) Color-jittering,
Gaussian blur,

Solarization

Contrastive ResNet50 ImageNet Resize,

(23M params) (1.2M frames) Color-jittering,
Horizontal flip,

Grayscale,

Gaussian blur,
Solarization

Contrastive ViT-S/16 ImageNet Resize,
(22M params) (1.2M frames) Color-jittering,
Horizontal flip,
Grayscale,
Gaussian blur,
Solarization
Contrastive ViT-B/16 ImageNet Resize,
(88M params) (1.2M frames) Color-jittering,
Horizontal flip,
Grayscale,
Gaussian blur,
Solarization
Masked auto-encoding ViT-S ImageNet Random resize,
(22M params) (1.2M frames) Random crop
Time-contrastive, ResNet-50 Ego4D Random crop
L1-regularization, (23M params) (4.3M frames)
Video-lang alignment
Masked auto-encoding ViT-S EpicKitchens None
(22M params) 100 Days of Hands,
Something-Something
(700k frames)
Masked auto-encoding ViT-B Ego4D, ImageNet None
(88M params) EpicKitchens,

100 Days of Hands,
Something-Something
(4.5M frames)

Algaedice Dual ResNet-50 Ego4D Random crop
(23M params) (4.3M frames)
CLIP, ViT-B/16 Contrastive ViT-B/16 Internet data Random crop
(88M params) (400M pairs)
DiNo v2, ViT Distillation ViT-S/14 LVD Multi-crop,
(21M params) (142M frames) Color-jittering,
Grayscale,
Gaussian blur,
Solarization

Table 2: List of pre-trained models with corresponding loss function, augmentations, and datasets
used for pre-training. We color code by the data and loss type: , ,
, and other.

‘right_cap2‘ camera angles and show results averaged over both camera angles. We also provide
proprioception to the policy. The final performance is averaged over the task settings for each seed.
The hyperparamters for policy training are summarized in Table [3] Error bars are 95% confidence
interval over seeds.

A.5 OOD PERF DETAILS

To provide a more granular understanding of how the complete set of models performs on our
evaluation suite, we break down performance by distribution shift type and environment in Figures[9]

and[10l
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Hyperparameter  Value

Loss type MSE
Learning rate 0.001
Batch size 32
Train steps 20,000
Optimizer Adam

Table 3: Hyperparameters for IL Policy Training

FrankaKitchen Train Dist. FrankaKitchen Test (Lighting)

11167

Figure 9: Detailed OOD Performance on FrankaKitchen.

A.6 IMAGENET VS OOD DETAILS

To evaluate ImageNet accuracy, we use all publicly available probes that have been trained on top
of the frozen model features and evaluate them on the ImageNet validation set. The models with
available probes are RN-INSUP, RN-DINO, MoCo. v3 RN, ViT-INSUP, ViT-DINO, MoCo. v3 ViT,
Dino v2 ViT, MoCo. v3 ViT, SIN-SUP, and CLIP ViT-B/16 and we use the probes that are provided
in the implementations cited in Section[A1]

A.7 SHAPE-BIAS DETAILS

We evaluate shape-bias using the ‘model-vs-human* evaluation framework from |Geirhos et al.
(2021)) and use the same probes from Section [A-6| to get classification results on the SIN valida-
tion dataset (D¢ye—con flict)-

Notably, [Naseer et al.| (2021) find that vision transformers are more shape-biased when making
classification decisions than equivalently trained convolutional networks. In our results, we don’t
find vision transformers to be more strongly shape biased. Vision transformers and convolutional
networks vary in how they handle spatial resolution: spatial resolution decreases in each layer of
ResNet-50 but remains constant within a ViT. This could explain why we see the ViT architecture
somewhat obviating the need for shape-bias in our results.

18



Meta-World Test (Lighting)

Figure 10: Detailed OOD Performance on Meta-World.

A.8 JACCARD INDEX METRIC DETAILS

We denote this nonlinear, deterministic transform as M. Formally, we compute the Jaccard index
by calculating the mIoU on the PASCAL VOC validation set, Dpgscal:

ANB
J(xia xj) = EDPa,sca,l |:AUB:|

Where A is a shorthand for positive classification for the target class by M (¢(-)) and B is a short-
hand for positive label for the target class. J is evaluated pixel-wise over image indices x; and
Zj.

A.9 DIFFERENT LEVELS OF DISTRACTORS

We extend Figure[g]by including results for ResNets in Figure[IT] Models are color coded using the
original color scheme in the paper.

A.10 FINETUNING

Because the goal of this paper is to probe the quality of learned representations, we follow the
tradition of performing evaluation on top of frozen model features. This evaluation is also consistent
with the increasing view of pre-trained visual representations as “foundation models” (Bommasani
et al} 2022} [Oquab et al, 2023)) that can be deployed without any gradient updates. Nonetheless,
even in the fine-tuning regime, in Figure [I2] we still see stronger performance from models that are
not designed for manipulation. In this setting, we increased the number of demonstrations to 25 to
allow for more data diversity when training the encoders.

A.11 REAL-WORLD EXPERIMENT DETAILS

Our demonstration data contains two subtasks: an initial screwdriver pick-up and then a handover
that happen in sequence. We only evaluate success on the subtask of picking up the screwdriver.
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Figure 12: Finetuning in FrankaKitchen.

Hyperparameter ~ Value
Chunk Size 100
KL Weight 10
Batch size 8

Epochs 10,000
Optimizer Adam
Learning Rate le-5

Table 4: Hyperparameters for Policy Training
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