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Abstract

Inspired by the success of transfer learning in
computer vision, roboticists have investigated vi-
sual pre-training as a means to learn visually-
robust policies from pixels. To that end, past
work has favored large object interaction data,
such as first person videos of humans completing
diverse tasks, in pursuit of manipulation-relevant
features. Although this approach improves the
efficiency of policy learning, we surprisingly find
that it undermines robustness: policies fail un-
der subtle changes in texture, lighting, and the
introduction of distractor objects. Intrigued by
this finding and inspired by pre-training effects on
robustness in computer vision, we aim to find pre-
training procedures that improve visual robust-
ness of manipulation policies. In particular, we
identify and analyze two key pre-training design
decisions that maintain good performance under
substantial visual changes in the environment: vi-
sion transformer architecture, and training with
an inductive bias towards shape. We validate our
findings on an extensive set of zero-shot visual
distribution shifts in two simulated manipulation
environments, improving over pre-trained models
designed for manipulation by greater than 60%.

1. Introduction

The promise of transfer learning is to enable efficient learn-
ing of downstream tasks by leveraging broad-scale pre-
training. In particular, we expect this strategy to yield useful
features in the presence of relatively little target domain data.
Within the field of learning-based robotics, this promise has
yet to be delivered even though there is a large need for it as
policies learned directly from pixels struggle substantially
with data efficiency and robustness (Cobbe et al., 2018;
2019a). Recent work (Damen et al., 2018; Grauman et al.,
2022) posits that the missing piece is a large dataset of
object interactions across diverse environments — the Ima-
geNet (Deng et al., 2009) or CommonCrawl (Raffel et al.,
2020) of manipulation. Indeed, training on large datasets
of first person human interaction data increases policy per-
formance and learning efficiency downstream (Nair et al.,
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Figure 1. Our goal is to identify visual pre-training strategies
whose features can be used for learning a manipulation policy
that will remain performant under visual shifts in the environment.
We find that vision transformers biased towards shape maintain the
best performance underneath a variety of visual shifts.

2022; Xiao et al., 2022). However, the question of visual
representations that improve robustness remains open.

Robotic task data differs substantially from common vi-
sion datasets in that large batches of images come from a
relatively narrow visual environment, which makes the im-
portance of robustness only more exaggerated. This differs
from many computer vision tasks in that one episode may
contain hundreds of images of the same lighting scenario,
target object, and background. But for these representations
to be practical, they need to maintain performance under
visual changes that are inevitable in realistic settings. For
example, someone could accidentally place a coffee cup
in frame behind the robot or the sun could cast shadows
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Figure 2. Evaluation Scheme. We begin our evaluation procedure by training a policy with behavior cloning on top of frozen features.
In every experimental setting, we ablate the encoder used to extract features from the image observation. The learned policy is then
evaluated in each of the visual shift environments to attain a zero-shot success value. Model components that are learned atg each stage

are highlighted in green.

in new directions over the course of the day. Developing
pre-trained visual representations that are resilient to these
distribution shifts would make policies more robust and in-
crease the likelihood that they can be deployed in diverse
environments. Therefore, we seek a better understanding of
the principles that govern the robustness of visual represen-
tations for manipulation tasks.

To identify strategies for visual pre-training, we take inspira-
tion from work on texture and shape bias in computer vision.
Some of the most common visual pre-training strategies
result in models that rely heavily on local texture (Geirhos
et al., 2019) and even though increasing shape-bias can
improve robustness, these approaches have not yet been
explored in the context of manipulation. We compare shape-
biased models alongside a broad suite of visual pre-training
approaches that compare different datasets, archiectures,
and training paradigms to identify a recipe for robust visual
pre-training.

The main contribution of this paper is the identification of
two design choices for robust pre-trained models for ma-
nipulation: shape-biased training and vision transformer
(Dosovitskiy et al., 2021) architectures. We validate our
findings with an extensive evaluation of the zero-shot perfor-
mance of policies trained on top of different visual encoders
under a range of visual distribution shifts, which is visual-
ized in Figure 3. Specifically, we look at changes in object
texture, the presence of distractors, and changes in lighting
on the Franka Kitchen and MetaWorld environments on a
total of ten manipulation tasks. We run an extensive evalua-
tion to verify our findings, where we conduct 465 training
runs and 5115 evaluation runs. Surprisingly, we find that
shape-biased vision transformers outperform both common
pre-training strategies for computer vision as well as pre-

trained models designed specifically for manipulation. We
further analyze the relevance of shape bias by comparing
two different ways of incorporating shape bias (specifically,
introducing shape bias with two different loss functions)
and verify that alternative ways of adding the shape bias
recover the same result.

2. Related Work

Representation learning for manipulation. The correct
approach to visual representation learning for robotics is
still an open question. There is evidence that separating
visual representation learning from policy learning can fur-
ther improve performance (Pari et al., 2022; Parisi et al.,
2022). Recent works have shown that models pre-trained
on large manipulation-relevant datasets (Goyal et al., 2017;
Damen et al., 2018; Shan et al., 2020; Grauman et al., 2022)
can improve the efficiency and performance of policy learn-
ing (Xiao et al., 2022) in comparison to standard vision
datasets such as ImageNet (Deng et al., 2009), but they do
not focus on performance under visual distribution shift.
We compare directly against R3M Nair et al. (2022) and
MVP Radosavovic et al. (2022). Other work has studied
generalization of pre-trained representations to new rein-
forcement learning tasks for manipulation (Ma et al., 2022)
and navigation (Sax et al., 2018) where the agent is able
to train on visual data from the new environment. Other
work has demonstrated visual robustness by learning visual
affordances from RGBD data (Yen-Chen et al., 2020) as
opposed to learning compressed features, which makes dif-
ferent assumptions about the structure of the features input
to policies and the sensor data available. Separate from the
question of pre-training visual representations is the ques-
tion of how to best train policies on top of pixel observations
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Figure 3. Zero-Shot Evaluation Suite in FrankaKitchen and Meta-World. We evaluate learned policies across a suite of visual
distribution shifts, visualized here. We study visual changes in background texture, the presence of distractors, and different lighting

conditions.

(Laskin et al., 2020b; Yarats et al., 2021).

Robustness in computer vision. There is extensive work
studying the impact of design choices, such as architecture,
loss, and data, on the performance of visual models under
distribution shift. See Geirhos et al. (2021) for a compre-
hensive comparison. Most relevant to our paper are studies
of shape-bias and architecture. While shape-biased models
tend to be more robust than texture-biased ones (Geirhos
et al., 2019), the impact of architecture on robustness is
less straightforward. For example, vision transformers ex-
hibit better robustness to universal adversarial attacks (Shao
et al., 2022), but they are more susceptible to patch-level
attacks (Fu et al., 2022). When compared on natural dis-
tribution shifts (Hendrycks & Dietterich, 2019; Hendrycks
et al., 2021a;b), vision transformers and convolutional net-
works achieve comparable performance when provided with
enough data (Bhojanapalli et al., 2021). But for occlusions
specifically, vision transformers appear to have an edge
(Naseer et al., 2021). Unlike all of these prior works, we
focus on how shape bias in pre-trained representations af-
fects robustness in downstream robotics tasks, instead of
downstream vision tasks.

Learning robust policies. Policy adaptation approaches
focus on enabling robustness to visual distribution, often
leveraging insights from domain adaptation during policy
training (Hansen & Wang, 2021; Fan et al., 2021; Yoneda
et al., 2021) or during deployment (Hansen et al., 2021).
Our work differs from these in that our encoder weights
not trained on any task data. Other work focuses on non-
visual shifts in decision making problems, such as changes
in dynamics or initial state distribution (Huang et al., 2021;
Raileanu et al., 2020; Laskin et al., 2020a; Cobbe et al.,
2019b; Packer et al., 2018; Farebrother et al., 2018). See
Kirk et al. (2021) and Zhao et al. (2019) for a comprehensive
survey. Past work has compensated for the special case of a

sim-to-real domain gap adding randomized textures during
training in simulation (Sadeghi & Levine, 2017; Tobin et al.,
2017; Peng et al., 2018; James et al., 2019).

3. Experiment Setup

Our goal is to understand what properties of a pre-trained
representation enable the best performance under visual
changes on a manipulation task. To that end, we perform a
thorough empirical analysis of current visual representation
learning methods on robotic manipulation domains. In this
section, we describe the details of our evaluation and the
models we compare and our motivations for selecting them.

3.1. Evaluation Scheme

We are interested in the setting where we learn a policy
on top of a frozen, pre-trained encoder and then evaluate
the policy zero-shot under visual distribution shifts such as
changes in lighting, object appearance, and the presence of
distractors. These shifts are visualized in Figure 3 and a high
level summary of our evaluation procedure is visualized in
Figure 2. In this section, we describe the specifics of the
manipulation environments, distribution shifts, and policy
training setups that we use to understand this question.

Environments and tasks. We study five tasks in two sim-
ulated manipulation environments. Within FrankaKitchen
(Gupta et al., 2020) we evaluate performance on opening a
microwave, sliding a cabinet door open, pulling a cabinet
door open, turning a knob, and turning on a light. Within
Meta-World (Yu et al., 2019) we study assembling a ring
onto a peg, picking and placing an object between two bins,
pushing a button, opening a drawer, and hammering a nail.

Distribution shifts. We reimplement two benchmarks
for policy generalization within FrankaKitchen and Meta-
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World. Within FrankaKitchen, we use the texture and light-
ing changes from KitchenShift (Xing et al., 2021) and add
three levels of distractions using YCB objects (Calli et al.,
2015). We use similar visual changes within Meta-World,
but instead change the texture of the workbench. More de-
tails about the specific implementation of the distribution
shifts are provided in the appendix.

Policy training. Policy training is done in a similar manner
as R3M (Nair et al., 2022). A summary of the evaluation
scheme is provided in Figure 2 We train an MLP on top
of the learned embedding with behavior cloning. The em-
bedding weights are frozen during policy learning, so the
pre-trained models receive no task data. We provide the
policy with the image encoded by the pre-trained model of
study and the proprioceptive observation. We train 3 differ-
ent seeds across different combinations of tasks, demonstra-
tions, and camera angles. In total, we learn 60 policies for
each model and perform 480 total evaluations per model.
More training details are available in the appendix.

3.2. Models.

In this section, we describe the pre-trained models that
we compare in our experiments. Motivated by the finding
that increasing shape bias can improve the robustness of
image classifiers (Geirhos et al., 2019), we focus our anal-
ysis on understanding the impact of pre-training a visual
model with shape-bias for robust manipulation policy learn-
ing downstream. We compare shape-biased models against
pre-trained models designed for manipulation and models
pre-trained on ImageNet classification (Deng et al., 2009).

3.2.1. VISION TRANSFORMERS VS CONVOLUTIONAL
NETWORKS

One important design choice when selecting a pre-trained
model is the choice of architecture. Convolutional networks
are commonly used when learning control policies directly
from pixels (Yarats et al., 2021; Espeholt et al., 2018; Mnih
et al., 2013). In all of our experiments, we use ResNet-
50 (He et al., 2016) to be consistent with past work on
visual pre-training (Parisi et al., 2022; Nair et al., 2022;
Ma et al., 2022). Vision transformers (ViT) (Dosovitskiy
etal., 2021) have seen widespread adoption within computer
vision (Khan et al., 2022), but have only recently been used
for learning representations for control (Xiao et al., 2022).
In our experiments, we present results with both the standard
ViT architecture and a data efficient transformer variant
(DeiT) (Touvron et al., 2021).

Notably, (Naseer et al., 2021) find that vision transformers
are more shape-biased when making classification decisions
than equivalently trained convolutional networks. Vision
transformers and convolutional networks also vary in their
spatial resolution: spatial resolution decreases in each layer

of ResNet-50 but remains constant within a ViT.

3.2.2. SHAPE-BIASED MODELS

Shape bias is the extent to which a model makes predic-
tion decisions based on shape or texture. Formally, it is
measured as the fraction of classification decisions made
based on shape or texture information from a selection of im-
ages where these cues are sourced from conflicting classes
(Geirhos et al., 2019). In the sections below we describe two
models that have been measured to have a high shape bias
in prior work (Naseer et al., 2021; Tartaglini et al., 2022).

Self-Distillation with No Labels (DiNo) is a self-
supervised teacher-student training objective. In our ex-
periments we use both a vision transformer and a residual
network trained with this objective on ImageNet from Caron
etal. (2021).

Supervised Learning with Stylized ImageNet (SIN). SIN
is a version of ImageNet with local texture removed through
Adaln style transfer (Huang & Belongie, 2017) introduced
by Geirhos et al. (2019). We use a vision transformer trained
on SIN from Naseer et al. (2021).

3.2.3. MODELS PRE-TRAINED FOR MANIPULATION

We focus on two recently introduced pre-trained models
for manipulation as the main baselines for this work. Our
goal is to develop representations that enable visually robust
policies, so we compare against pre-trained models that
have been designed for manipulation and control.

Masked Visual Pretraining (MVP) (Xiao et al., 2022) is
an approach for learning a pre-trained Vision Transformer
(ViT) (Dosovitskiy et al., 2021) for control that uses masked
autoencoding (MAE) (He et al., 2021). We use the pre-
trained model from Radosavovic et al. (2022), which is
trained on the Ego4D (Grauman et al., 2022), Something
Something (Goyal et al., 2017), YouTube 100 Days of Hands
(Shan et al., 2020), EpicKitchens (Damen et al., 2018), and
Imagenet (Deng et al., 2009) datasets.

Reusable Representations for Robot Manipulation
(R3M) (Nair et al., 2022) trains a ResNet-50 (He et al.,
2016) on Ego4D with a series of losses designed for manip-
ulation. Specifically, they combine time-contrastive (Ser-
manet et al.) and video-language alignment losses with an
L1 penalty to enforce sparsity in the resulting representation.

4. Evaluating Pre-Trained Models Under
Visual Shifts

The goal of our analysis is to identify a recipe for visual
pre-training that enables visually-robust policies. We focus
specifically on the potential of shape-biased models to de-
liver more robust features in the zero-shot policy transfer
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Figure 4. We report success results of learned models on the train-
ing distribution and zero-shot performance averaged over different
visual change to the environment. The average result over all zero-
shot changes (i.e., lighting, texture, distractors) is plotted on the
far right. In both environments, a shape-biased vision transformer
(DiNo) achieves the best zero-shot success rate.

setting. To that end, we perform a thorough empirical anal-
ysis of current visual representation learning methods on
robotic manipulation domains, focusing on the following
perspectives:

1. In Section 4.1 we study how a shape-biased model
(DiNo-ViT) compares to representations design for ma-
nipulation on policy transfer under visual distribution
shifts.

2. Section 4.2 ablates the importance of model architec-
tures and loss functions.

3. We analyse the effect of fine-tuning the pre-trained
representations during policy training in Section 4.3.

4. We compare different instantiations of shape-bias in
Section 4.4.

5. We visualize the attention heads of different pre-trained
ViTs in Section 4.5.

4.1. How do pre-trained models designed for
manipulation perform under visual distribution
shift?

The averaged performance under each distribution type for
both FrankaKitchen and Meta-World is shown in Figure 4.
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Figure 5. We present results for different combinations of archi-
tectures (namely, ResNet-50 and ViT) and training paradigms
(supervised image classification and self-supervised learning with
DiNo).

Surprisingly, R3M achieves the lowest zero-shot perfor-
mance of 3.7% on FrankaKitchen even though it achieves
the highest success rate of 44.9% within the train distribu-
tion. This amounts to greater than an 91.8% perfomance
drop. MVP style training achieves the lowest performance
within the train distribution on the FrankaKitchen tasks,
but achieves a transfer performance success rate of 6.6%.
Averaged across environments, this amounts to a 72.2% per-
formance drop from the training distribution. In spite of
seeing the least data and less task-relevant data, DiNo per-
forms best in the settings where there is a visual distribution
shift. DiNo performance drops by 57.5% to 13.6% from
32.0%, so it also achieves a significantly lower percent drop
than MVP or R3M.

On Meta-World, all models experience a larger performance
drop. This is especially true for the texture distribution shift
where MVP and R3M achieve an average success rate of
1.3% and 0.6% respectively. The texture shifts within Meta-
World include two different wood table texture and one blue
table texture, which is visualized in Figure 3. Interestingly,
even though the blue table texture is the least realistic, MVP
and R3M achieve a 0% success rate on not only the blue
table but also the darker wood table. DiNo achieves greater
than 6% on all 3 test-time table textures.

These results show that pre-trained models designed for ma-
nipulation perform poorly under visual distribution shifts.
This is suprising because the distribution of data that MVP
and R3M are trained on is much more similar to our eval-
uation environments and much larger than ImageNet. We
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Figure 6. We evaluate zero-shot transfer after fine-tuning the pre-
trained model during policy training.

conclude that training with losses or large datasets that are
designed for manipulation is insufficient for our goal. In-
stead, we find that DiNo provides more visually robust
features, improving over the next best model by 106.0% in
FrankaKitchen and 38.8% in Meta-World.

4.2. How do architecture and loss affect zero-shot
performance?

In the last section, we saw that a shape-biased vision trans-
former in the form of DiNo can enable visually robust poli-
cies even when compared to models designed for manipula-
tion. In this section, we ablate the choice of architecture and
loss while holding the pre-training dataset constant. DiNo
differs from MVP both in dataset and loss function and also
differs from R3M in architecture. This analsyis allows us
to get a more precise understanding of the components of
DiNo’s success. All models are trained on ImageNet and we
separately train ResNet-50 and ViT models on the ImageNet
classification and DiNo objectives.

We plot the success rate of each model in Figure 5. The best
performing model under visual distribution shift in each task
is ViT-DiNo. DiNo improves over the next best model by
64.6% in FrankaKitchen and 53.8% in Meta-World. How-
ever, unlike in Section 4.1, DiNo also achieves the high-
est success rate when evaluated in the training distribu-
tion. It improves by 62.0% over a supervised ResNet-50 in
FrankaKitchen and by 25.7% over a supervised ViT in Meta-
World. This suggests that pre-training a vision-transformer
with a shape bias has a positive effect on overall policy per-
formance when compared with supervised losses or residual
networks.

Interestingly, even though the DiNo loss positively impacts
performance for ViT models, it negatively affects perfor-
mance when used with a ResNet-50. Caron et al. (2021)
show that ViTs are more shape-biased in general and this
result suggests a synergy between DiNo-style training and
ViT architecture, which could further support that finding.
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Figure 7. We explore multiple ways of inducing a shape bias within
a ViT. We compare supervised pre-training with Stylized ImageNet
(SIN-Sup) against DiNo trained on ImageNet. Both models are
shape-biased and both achieve comparable zero-shot performance.

These findings not only show that DiNo is useful for training
visually robust policies, but also hint at the possibility of
improving overall policy performance. DiNo-style train-
ing could be combined with manipulation-specific losses
proposed in R3M or applied to human-object interaction
datasets such as Ego4D. In the spirit of this potential, we
explore another shape-biased training strategy in the next
section.

4.3. How does finetuning affect zero-shot performance?

In the previous sections, we do not fine-tune the visual
representations during policy learning, so the encoders do
not have a chance to see any task-data. From a practical
perspective, freezing the encoder increases the speed of
policy learning because it avoids computing gradients for
and making updates to the encoder weights. This evaluation
setting is also more similar to the prior work we compare
against. However, there may be cases where fine-tuning
makes sense, such as when we have a lot of data from one
visual environment and we are not compute-constrained.

In Figure 6, we present fine-tuning on all models. Interest-
ingly, R3M sees the largest benefit from fine-tuning while
both vision transformer architectures see smaller perfor-
mance improvements. This is true both especially under the
visual shifts. In spite of this performance gain, shape-biased
vision transformer still maintain the strongest performance
on the zero-shot evaluation.

4.4. Can alternative loss functions enable good
performance under shift?

We evaluate an alternative for training a shape-biased model.
This is insightful not only because it provides further evi-
dence that shape-biased vision transformers enable visually-
robust policies, but also because it shows that visually robust
pre-trained models can be trained with different loss func-
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Figure 8. We visualize the first 6 attention heads from MVP and DiNo. Without seeing any environment data, DiNo segments task-relevant
parts of the scene, such as the handle of the kettle, the joints of the robot, the drawer handles, and the knobs.

tions and data augmentation schemes. The DiNo model we
use is trained with color jitter, Gaussian blur, mutli-crop,
and horizontal flip augmentations during training. The as-
sumptions underlying these augmentations may not be valid
when performing representation learning for robotics. For
example, in a manipulation task we may want to represent a
horizontally flipped image differently from the original as
left-ward actions in the original image become right-ward
actions in the flipped image. Therefore, we compare DiNo,
which is trained on ImageNet, against a vision transformer
trained with supervision on Stylized ImageNet (SIN), which
we describe in Section 3. Furthermore, we may want to
pre-train models with labeled data when it is available, so
identifying a strategy for leveraging supervision while main-
taining zero-shot performance is critical.

Figure 7 compares the performance of DiNo againset su-
pervised training on SIN on FrankaKitchen. SIN-Sup and
DiNo achieves a 9.8% and 13.0% success rate, respectively,
across all visual shifts. Both improve over MVP, which is
the best pre-trained manipulation model with a success rate
of 6.9%, and over ViT-Sup, which is the next best model
overall with a success rate of 7.9%.

Within each visual shift, SIN-Sup performs much more
consistently than DiNo, which is stronger in the presence
of distractors and texture changes. Of all of the models
evaluated, SIN-Sup is the most robust to lighting changes on
the FrankaKitchen environment. These findings show that
the benefits of shape bias are not limited to DiNo. However,
within each kind of visual distribution shift, one strategy
may be preferred over the other.

4.5. Visualizing Attention Heads of Different Training
Strategies

An interesting artifact of training a Vision Transformer with
DiNo is that the attention heads emergently learn segmen-
tations of objects in the scene. In this section, we visualize
the attention heads of two pre-trained vision transformer
models. Using the same visualization procedure as (Caron
et al., 2021), we show the first six attention heads of MVP
and DiNo in Figure 8. In these examples, the attention with
DiNo heads are much more concentrated than within the
MVP heads and, interestingly, without seeing any task data,
the head highlights task relevant objects like the robot arm
or the door handles.

4.6. Operationalizing Shape-Bias

* train any ViT backbone with different percentages of
shape bias

* correlate shape bias of each base model with transfer
score

* use shape-token to modulate degree of shape bias

5. Conclusion

We show that shape-biased vision transformers produce rep-
resentations that enable visually robust policies even when
compared to pre-trained models that are designed for ma-
nipulation. We demonstrate that the success of shape biased
models is not limited to a particular training scheme: us-
ing supervision with SIN gives comparable performance as
training DiNo on ImageNet. This could be critical in set-
tings where specific augmentations may impose invariances
on the image representations that are not valid for robotics
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(such as a horizontal flip) or where labeled data can be
leveraged for supervised pre-training. Shape-biased vision
transformers also improve overall policy performance when
compared to other architecture and loss choices, opening
the door for future work to scale such methods to larger and
more task-relevant datasets such as Ego4D.
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Figure 9. We scale each attention head in the final block of DiNo by a single parameter, which is learned during policy fine-tuning. The
resulting weight allows us to qualitatively understand how the policy fits to different components of the output image feature. Interestingly,
the policy does not strictly prefer attention heads that provide clean segmentation masks.

A. Appendix.
A.1. Details of the Policy Training and Experimental Conditions

We learn a 2-layer MLP on top of the pre-trained, frozen features. For MVP, DiNo, and R3M in Kitchen, we evaluate over 5,
10, and 25 demonstrations. For all other models we evaluate over 10 demonstrations. All reported changes in performance
are calculated from all three levels of demonstrations in Section 4.1, but everywhere else compares model performance
at 10 demonstrations. For both FrankaKitchen and Meta-World environments, we train policies independently over the
left_cap2 and right_cap2 camera angles and show results averaged over both camera angles. For the Meta-World experiments
in Section 4.2, we only show results on one camera angle due to time constraints. The final performance is averaged over
the task settings for each seed. Error bars are 95% confidence interval over seeds.

A.2. More Details of Models

We use the ViT-B backbone for MVP. Both SIN and ImageNet supervised vision transformers use the more effiecient DeiT
(Touvron et al., 2021) backbone.

A.3. Details of the Disribution Shifts

The R3M environment differs from the original KitchenShift environment in that the kitchen is randomly shifted at the start
of each episode, making our evaluation suite more difficult. After sub-selecting for visual distribution shifts, we also add in
easy, medium, and hard distractor settings, where the kitchen counter is cluttered with an increasing number of YCB objects
(Calli et al., 2015). The difficulty of the setting corresponds to the number of distractors present. Within Meta-World we add
in YCB distractor objects in the same way. We don’t use the MuJoCo scanned object datasets because of imperfections in
the coloring of the textures.

A 4. Learning Weights on Each Attention Head

To explore which attention heads are preferred during the downstream policy learning task, we re-run policy training while
learning a single single scalar multiple for each of the six attention heads of the final block of DiNo. In Figure 9, we
visualize each attention head sorted by the average scaling factor learned for that head across all kitchen tasks. Surprisingly,
the more concentrated heads are not always preferred by the policy. We find that the attention head with the largest average
scale is also preferred by the majority of tasks.

In Figure 10, we visualize attention heads sorted by the weight learned in our adapted fine-tuning setting over every task
in FrankaKitchen from the right camera angle. Interestingly, four out of the five heads put the most weight on the same
attention head even though their tasks require acting on different objects.
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Figure 10. We order the attention head by the learned scale on each task. Images on the left are heads that received higher weight (i.e., the
model leverages this head more for the task) and images on the right receive lower weight. The head index and task name are listed on the
far left. The top row sorts the heads by average weight across tasks.



